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Abstract

The quality and availability of resources influence the geographical distribution of species. Social species need safe places to
rest, meet, exchange information and obtain thermoregulatory benefits, but those places may also serve other important
functions that have been overlooked in research. We use a large soaring bird that roosts communally in cliffs, the Andean
condor (Vultur gryphus), as a model species to elucidate whether roost locations serve as a refuge from adverse weather
conditions (climatic refuge hypothesis, CRH), and/or from predators or anthropogenic disturbances (threats refuge
hypothesis, TRH). The CRH predicts that communal roosts will face in the opposite direction from where storms originate,
and will be located in climatically stable, low precipitation areas. The TRH predicts that communal roosts will be large,
poorly accessible cliffs, located far from human-made constructions. We surveyed cliffs used as communal roosts by condors
in northwestern Patagonia, and compared them with alternative non-roosting cliffs to test these predictions at local and
regional scales. We conclude that communal roosting places provide refuge against climate and disturbances such as, for
instance, the threats of predators (including humans). Thus, it is not only the benefits gained from being aggregated per se,
but the characteristics of the place selected for roosting that may both be essential for the survival of the species. This
should be considered in management and conservation plans given the current scenario of global climate change and the
increase in environmental disturbances.
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Introduction

The geographical distribution of a species is strongly influenced

by resource availability. The quality of available resources can

vary due to intrinsic characteristics as well as the ecological

requirements of the species that use them [1]. For birds, location of

food, nesting and roosting sites can be essential [2]. Particularly,

for social species it is important to access safe places to rest, meet,

exchange information or obtain thermoregulatory benefits [3].

Knowledge about how a species selects this resource at different

geographical scales can provide clues to the ecological aspects

associated with habitat use and behaviour, and can be useful to

establish management strategies [4–6]. Moreover, this information

can be used to analyse the potential habitat for a species, and to

understand behaviours from an ecological and evolutionary point

of view [2,4–5].

Communal roosting is widely distributed among animals, and

some of the proposed benefits of aggregation include the exchange

of information for finding food, mate acquisition, and thermoreg-

ulatory purposes [3,7–9]. There are a great number of studies

devoted to the analysis of communal roosting behaviour in

association with feeding habits [7,10–12]. The potential advan-

tages of communal roosting behaviour, unassociated with feeding

behaviour, have been less studied (but see [8,10,13]). Moreover,

the physical and environmental characteristics that may influence

the selection of communal roosting places have also been rather

overlooked [3].

Many species, including several raptors, use rocky cliffs as

roosts, to rest or hunt [7,14]. In particular, large soaring birds

depend on places that provide refuge from predators (i.e., safe

places), and allow them to take off easily, among other

requirements [14,15]. Hence, cliffs can be useful to analyse other

potential advantages of communal roosting behaviour beyond its

association with feeding habits. In particular, Andean condors

(Vultur gryphus) roost communally in cliffs different from those in

which they choose to nest (more detailed information is given in

Methods, Study species) [16,17].

The distribution and the aggregation patterns of condors in

roosting places might be limited by the occurrence of roosts

offering sun or protection, among other characteristics [16,18].

Here, we proposed that communal roosts may serve as refuges

from adverse weather conditions (‘‘Climate Refuge Hypothesis’’,

CRH). In northwestern Patagonia (Argentina), the climate is cold-

temperate, seasonally variable in terms of temperature, wind and

precipitation, and adverse weather (strong winds, snow, etc.)

comes mainly from the west-northwest [19]. Large flying birds are

strongly limited by weather conditions, and avoid flying on rainy

days [20]. The CRH predicts that: (1) On a regional scale, Andean

condor communal roosts will be located in places with favourable

weather conditions. Thus, in northwestern Patagonia (Argentina),

communal roosts will be associated with warmer temperatures,

lower variability in temperature and lower precipitation compared

with cliffs not used for roosting. (2) At a local scale, where regional
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weather conditions are similar, the cliffs used for communal

roosting will face in the direction opposite to that of predominant

yearly winds, snow and rain.

Rocky cliffs can also provide a safe environment from potential

predators [14,21], and this could favour the evolution of the

formation of communal roosts in birds [3,10]. Condors face risks

mainly when they are on the ground (e.g., eating), where they are

very cautious [22–24], and also when they are roosting. At present,

Pumas (Puma concolor), foxes (Dusicyon sp.), dogs (Canis familiaris), and

humans could be perceived as a threat to condors during roosting

[14,25,26]. Thus, if communal roosts offer refuge from threats

posed by predation or anthropogenic disturbances (‘‘Threats

Refuge Hypothesis’’, TRH), we predict that they will be in cliffs

inaccessible to terrestrial predators and humans. To test this

hypothesis at a local scale, we compared the geomorphologic

characteristics of communal roosts with closed alternative non-

roosting cliffs. On a regional scale, we predicted that if humans are

perceived as a threat, cliffs used as communal roosts will be farther

from towns, rural houses or roads, than alternative cliffs.

Methods

Study Species
The Andean condor is a Near Threatened large scavenger

inhabiting the Andes mountain ranges in South America, and has

suffered important retractions in several areas of its original

geographical distribution [27]. Current populations are rare and

reach maximum numbers in the southern area of the species’

distribution range [28]. The Andean condor does not breed

communally but uses communal roosts to overnight [16]. Their

nests may be located some hundreds of meters away in the areas

surrounding their communal roosts, but can commonly be found

as far as several kilometres away [16–17,26]. Breeding adults

frequently roost in the vicinities of the nest, but those roost-sites are

used only by one individual rather than communal. Aggregations

of individuals in the communal roosts may be more or less

dispersed depending on the size of cliffs. Some of those shelves

allow for the aggregations of dozens of individuals and others are

small caves that can be used by one individual each. All sexes and

age classes are represented in the communal roosts [18,28,29].

Study Area
The study was carried out in a cold-temperate region in north-

western Patagonia (Argentina) (ca. 40u–42uS and 70u–72uW). The

Andes to the west act as a barrier to westerly winds at these

latitudes, which produce variable weather conditions [19], and the

predominance of winds blow from the west-northwest. The air

masses from the Pacific Ocean are driven up and over the Andean

mountain ranges causing the air to lose much of its moisture as

precipitation on the Chilean side. Upon reaching the leeward side

of the Andes the dry air descends and picks up any available

moisture from the landscape below. This produces a high west-east

gradient of precipitation in Argentina, where precipitation declines

exponentially with distance from the Andes [19].

Towards the east, the Patagonian landscape is predominated by

plains and erosive forms that have resulted in a number of

outcrops serving as distinguishing characteristics of the local

landscape. The number of roads and cars, and human density in

the study area are low: 0.06 km of road/km2, from about 100

vehicles/day on gravel roads to 1550 vehicles/day on the national

roads, and ,0.6 inhabitants/km2 [23].

Study Design
Choice of communal roosts and alternative cliffs. We

surveyed the south of Neuquén and the northwest of the Rı́o

Negro provinces in Patagonia looking for Andean condor

communal roosts based on information from local people and

researchers, and previous data on roost location [16,28].

Permission to study cliffs used by condors as communal roosts

were provided by Dirección de Fauna Silvestre de Rı́o Negro, the

Argentine National Park Administration, and the owners and

managers of local farms. We did not collect or manipulate birds in

this study.

Proximity to food sources is a potentially important factor that

may influence the presence of communal roosts in several species

[7,11,12]. However, condors have large home ranges and can fly

more than two hundred kilometres per day in order to find food

sources [30] (Lambertucci et al. unpubl. data). Moreover, the

same bird can move between communal roosts over a period of

days [28,31]. Nonetheless, to minimise the potential effect of food

availability on our results we selected a geographically restricted

study area that condors are able to cross in a few hours [30], and

where the spatial variation of food resources is low (see below).

Data on a regional scale. We mapped a total of 29

communal roosts, within a rectangular study area of 150 km

north-south690 km west-east, to analyse the ecological and

geomorphological determinants of the occurrence of communal

roosts at a regional scale. We generated 29 random geographic

coordinates within the same area using the ‘‘animal movement’’

extension of ArcView v3.3 [32]. These points were imported into

Google Earth (http://earth.google.es/) to select the closest cliff to

each random location. Then, we verified in the field that the

location corresponded to a cliff not used by condors (i.e., no birds

or faeces on the shelves). We estimated the same geomorphological

climatic and anthropogenic variables for cliffs used and not used as

communal roosts (see Table 1).

Data on a local scale. We selected 24 communal roosts at

the centre of our study area out of the total 29 communal roosts

mapped within the region. We walked along the four cardinal

directions looking for the closest cliffs with apparently similar

topographical and environmental characteristics to the central cliff

used as a communal roost, but with no indication of use. We

selected 3 or 4 of those alternative cliffs, depending on their

availability and accessibility to the research team. These locations

were also characterized in situ by the same set of variables

estimated for communal roosts (see variables in Table 1). In total,

we surveyed 109 cliffs: 24 communal roosts, and 85 alternative

cliffs.

Climatic variables. We used the extension Grid Analyst

v1.1 in ArcView v. 3.3. (ESRI, CA, USA) to assign values of five

climatic variables to the geographic coordinates of each cliff based

on the WorldClim digital database at a spatial resolution of 1 km2

(Hijmans et al. [33], available http://www.worldclim.org/current):

1) mean annual temperature, 2) mean annual precipitation, 3)

diurnal mean range in temperature, 4) isothermality (diurnal mean

range of temperature/annual range of temperature), and 5)

seasonality of precipitation (Table 1).

We estimated the angular direction of the wind within our study

region from records of wind direction registered by a weather

station located in the town of Bariloche (41u0790499S–

71u2493999W). This station registered 60961 records in 2007.

Geomorphologic variables and altitude. Each cliff was

characterized in the field by aspect, height (m), width (m), the top-

floor altitude of the cliff (m above sea level), distances from borders

to shelves and accessibility of the cliff (Table 1).

Communal Roosts as Climatic and Threats Refuges

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e67304



Anthropogenic variables. Distances to the closest human

buildings were included as indicators of anthropogenic distur-

bance. We distinguished between living places (houses, farms,

towns) and roads (Table 1). At a local scale, we recorded the

distance from each communal roost to the first building without

any discrimination. Because the distances between communal

roosts and alternative cliffs were short (mean distance between

communal roosts and alternative cliffs was ca. 1.3 km) it can be

assumed that they were at the same distance from distant built-up

areas (towns). At a regional scale, we separately estimated the

distances to the closest human building (house or farm) and to the

closest built-up area (village or town; Table 1).

Data Analysis
First, we compared the environmental attributes between

communal roosts and alternative cliffs using non-parametric

statistics [34]. We then applied logistic regressions [35] to

determine the variables that better explained the use of a cliff

for communal roosting, based on environmental predictors

estimated at both local and regional scales; we included as a

positive response (1) the communal roosts, and as a negative (0),

the alternative roosts (Table 1). Variables were combined in the

same statistical model provided they had a correlation of r ,0.6 to

reduce the problem of multicolinearity (see Table S1 in File S1).

We employed a multi-model selection approach [36] that

involved an exhaustive search of all possible (single and multiple)

logistic models to account for the presence of communal roosts.

We included every possible combination of (low correlated,

r,0.60) variables for each subset of predictors representing

geomorphology, weather conditions, and anthropogenic distur-

bance. We used the Akaike’s Information Criterion (AIC, [35]), to

find the best ecological model supported by our data among all

possible models. For each group of predictors, the model with the

lower AIC was selected as that model best supported by our data.

Models with DAIC,2 from the best supported model were

considered equivalents [36]. When several models had a DAIC,2,

from the best models we selected the most parsimonious (i.e., with

the lower number of variables). We combined the effects of

variables from each of the best (geomorphologic, anthropogenic

and climatic) models, and performed an exhaustive search of the

‘‘best final model’’ based on AIC. We used the McFadden’s rho

test as a measure of the variation explained by the best final model.

The McFaddeǹs rho is similar to the coefficient of determination

(r2) of a linear regression, although it shows lower values. Values of

McFadden’s rho between 0.2 and 0.4 are satisfactory [36]. We

considered a coefficient estimate to be statistically significant when

it was more than two standard errors away from zero [37].

The autocorrelation of variables across the geographic space is

an inherent property of most ecological data, which often

Table 1. Variables measured in cliffs used as communal roosts by the Andean condor (Vultur gryphus) and in alternative cliffs (not
used for roosting) in the NW of Patagonia, Argentina.

Variable Description

Measures taken at the cliff

Aspect of the cliff (1,2) Angular aspect of the cliff measured with a compass, estimated in degrees around the middle of the outcrop in the
area with greatest number of shelves.

Altitude at the top Altitude above sea level at the highest point of the cliff, measured with an altimeter. When the top could not be
accessed, we used a clinometer and GPS.

Cliff height (1,2) Difference between the altitude at the base of the cliff and the mean between the maximum and minimum altitude
of the top.

Cliff width (1,2) Linear distance between the lateral ends of the cliff. Measuring the coordinates of each extreme (with GPS) and
calculating the distance between the points.

Floor-shelf distance (1,2) Distance from the lowest shelf to the floor

Top-shelf distance (1,2) Distance from the highest shelf to the top of the cliff.

Accessibility (1,2) Accessibility to humans or possible terrestrial predator by foot, categorized as: high (3), medium (2) or low (1). We
calculated the accessibility based on the quantity of shelves than could be reached by a terrestrial predator (e.g.,
puma (Puma concolor), fox (Pseudalopex spp.), ferret (Galictis cuja), etc.). We considered a Low accessibility (1); when
.70% of the shelves were inaccessible; Medium accessibility (2): when around half of the shelves were inaccessible
(40–70%); and High accessibility (3): when only ,40% of the shelves were inaccessible.

Measures taken around the cliff

Distance to building (1,2) Distance from the cliff to the closest human construction measured in the field and by satellite images. Measured
variables were: distance to edifice (house or farm) and distance to town (village or city). At a local scale, we only
analysed the distance to the closest building since the distances between the communal roosts and other cliffs was
low and almost invariable (see Methods).

Distance to road (1,2) Distance from the cliff to the closest road measured from satellite images.

Annual mean temperature (BIO1) (2) Annual mean temperature measured over a year1

Mean diurnal range (BIO2) (2) Mean diurnal range (mean of monthly (max temp - min temp)) 1

Isothermality (BIO3) (2) Isothermality (mean diurnal range (mean of monthly (max temp - min temp))/temperature annual range (max
temperature of warmest month- min temperature of coldest month) (*100) 1

Annual precipitation (BIO12) (2) Amount of precipitation over a year1

Precipitation seasonality (BIO15) (2) Precipitation seasonality (coefficient of variation of the precipitation)1

(1) Variables used at local scale, (2) variables used at regional scale.
1Obtained from WorldClim (www.worldclim.org), a digital global database that provides information on climate variables at a spatial resolution of ca. 1 km2 [33].
doi:10.1371/journal.pone.0067304.t001
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complicates the statistical testing of hypotheses by standard

methods of analysis because it can inflate type I error rates, and

may result in model instability [38]. We used SAM v. 4.0 [39] for

previous analyses and to evaluate the effects of spatial structuring

of variables on the performance of our environmental models.

SAM v.4.0 allows the elaboration of a spatial correlogram using

Moran’s (I) coefficient to describe the magnitude of spatial

autocorrelation of variables for different distance classes. This

coefficient range from 21 (maximal negative spatial autocorrela-

tion) to +1 (maximal positive spatial autocorrelation), and values

close to zero indicate no spatial correlation. We checked the

adequacy of each environmental model through the examination

of patterns of spatial autocorrelation in the residuals. Independent

of the pattern of spatial autocorrelation in the original (predictors

and response) variables, if no spatial autocorrelation is found in the

residuals after including environmental predictors in the statistical

model, then it can be concluded that the model has taken into

account all spatial structure in the original data, and there is no

statistical bias in the overall statistical analysis [38].

Finally, we applied circular statistics [40] to compare the aspect

of roosts and alternative cliffs. We used the Rayleigh test to

determine if the mean aspect angle, i.e. averaged over all roosts,

differed from a random distribution around the 360u [41]. We

applied the Watson U2 test [41] to look for significant differences

between the aspect of communal roosts and alternative cliffs, and

to compare the aspect of communal roosts with respect to angular

wind direction.

Test of the effect of site and food availability as potential

confounding variables. Since at a local scale communal roosts

and alternative cliffs are located close to each other, we applied a

logistic regression with ‘‘site’’ as the only explicative variable; given

that there was no significant effect of site (Wald = 0.499, P = 0.99),

we did not control for site effects in any subsequent analyses. We

also evaluated the possible effect of food availability on the use of

communal roosts. We must emphasize here that condors in our

study area were able to come and go from any of the roosts studied

[31] (Lambertucci et al. unpubl. data), hence it was reasonable to

assume that food resources were not a limiting factor influencing the

use of any cliff for roosting. Nonetheless, to confirm this assumption

we selected a subset of 18 communal roosts and 17 alternative cliffs

for which data on the density of livestock in the surroundings were

available [42]. Given that we did not find evidence that the presence

Table 2. Environmental and geomorphological characteristics of cliffs studied.

Variables Communal roosts Alternative cliffs Mann-Whitney U-Test

n = 24 (± DS) n = 85 (± DS)

Aspect (u, degrees) 108,9 (63,2) AD

Accessibility (1–3)* 1,2 (0,48) 2,2 (0,77) U = 310 P,0.001

Cliff width (m) 341,3 (178,0) 145,5 (122,0) U = 279 P,0.001

Cliff height (m) 105,9 (56,2) 46,7 (37,5) U = 282 P,0.001

Altitude at the top (msnm) 1267,3 (269,9) 1171 (229,2) U = 764, P = 0,061

Floor-shelf distance (m) 23 (18,0) 6,8 (7,2) U = 305 P,0.001

Top-shelf distance (m) 15 (12,7) 5,2 (7,4) U = 390 P,0.001

Distance to building (m) 2531,7 (1210,5) 2479,4 (1317,4) U = 956 P = 0.468

Distance to road (m) 1268,8 (1162,1) 1273,1 (1079,6) U = 1009 P = 0.939

Mean values (6 Standard deviation, SD) from different variables measured in Andean condor communal roosts and cliffs not used as communal roosts (alternative cliffs)
and their statistical comparisons (Mann-Whitney U-test).
*categorical variable (1 lower- 3 higher accessibility). AD = all directions.
doi:10.1371/journal.pone.0067304.t002

Figure 1. Spatial correlograms. Moran’s index to detect the
presence of spatial autocorrelation (arrows = I,0.05) in the response
variable ‘‘presence of cliffs’’ (black dots) and in the residuals (open dots)
from the best logistic model fitted at a local (a), and at a regional scale
(b) (see Methods).
doi:10.1371/journal.pone.0067304.g001
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of communal roosts was associated with the density of livestock

(Logistic Regression Model including only livestock abundance as

an explanatory variable, Wald = 0.097; P = 0.755), food availability

was not included in any subsequent statistical analyses.

Results

Overall Differences between Communal Roosts and
Alternative Cliffs

Communal roosts were larger and less accessible, with shelves

more distant from the borders of the cliff, than alternative cliffs.

However, both were at similar altitude above sea level and at

similar distances to the closest building or road (Table 2).

Factors Associated with the Presence of Communal
Roosts at a Local Scale

The model including geomorphological variables only was the

best supported by our data (Table 3; Table S2 in File S1). The

presence of communal roosts was associated with wide cliffs of low

accessibility, with a long distance (a mean of 23 m) from the floor

to the lowest shelf, and eastern aspect. Cliff height, distance from

the top to the highest shelf, and distances to roads and buildings

had no significant association with the presence of communal

roosts at a local spatial scale (Table 3). There was a very low

(I = 20.12), negative spatial autocorrelation in the original

response variable at the lowest distance class (,5 km); the lack

of spatial autocorrelation in the residuals from the best geomor-

phological model (i.e., for all distant classes I,0.1; Fig. 1a)

suggested that our statistical models were robust and adequate to

account for the spatial variation in the use of roosts at a local scale.

Factors Associated with the Presence of Communal
Roosts at a Regional Scale

A mixed model that combined climatic and geomorphological

variables was the best supported by our data to account for the

presence of communal roosts at a regional scale (Table 4; Table S3

Table 3. Models at a local scale that best distinguished between Andean condor communal roosts and alternative cliffs.

Model Rho AIC Variables Coefficient
Standard
coefficient

Standard
error

Anthropogenic ,0.001 118.89 Intercept 21.343 0 0.505

Distance to building ,0.001 0.097 ,0.001

Geomorphologic ( = Mixed) 0.709 43.46 Intercept 2.719 0 1.687

Aspect 24.905 25.906 1.830

Accesibility 21.944 23.918 0.660

Cliff width 0.013 5.083 0.005

Floor-shelf distance 0.208 6.211 0.074

Best final logistic regression models at a local scale that included variables representing anthropogenic disturbances, and geomorphology that best distinguished
between 24 Andean condor communal roosts and 85 alternative cliffs selected around the roost. We included the value of McFadden’s Rho-Squared (Rho) and Akaike’s
Information Criterion (AIC). Numbers in bold are statistically different (i.e., they are more than 2 standard errors away from zero).
doi:10.1371/journal.pone.0067304.t003

Table 4. Models at a regional scale that best distinguished between Andean condor communal roosts and alternative cliffs.

Model Rho AIC Variables Coefficient Standard coefficient Estándar error

Climatic 0.283 63.64 Intercept 227.61 0 12.109

Isothermality 6.188 4.363 2.52

Anual Precipitation 20.005 21.581 0.002

Anthropogenic 0.099 78.41 Intercept 20,813 0 0,688

Distance to town 0,090 1,392 0,039

Geomorphologic 0.451 52.13 Intercept 20,371 0 1,409

Aspect 21,959 21,883 0,853

Cliff width 0,006 2,276 0,002

Floor-shelf distance 0,106 3,625 0,050

Mixed 0.648 38.29 Intercept 210.909 0 12.581

Aspect 23.802 23.655 1.307

Floor-shelf distance 0.243 8.309 0.101

Isothermality 4.5 3.173 2.621

Annual precipitation 20.014 24.72 0.005

Final logistic regression models built at a regional scale by a group of variables (climatic, anthropogenic, and geomorphologic) and the mixed model that best
distinguished the 29 Andean condor communal roosts from the 29 alternative cliffs. We included the value of McFadden’s Rho-Squared (Rho) and Akaike’s Information.
Criterion (AIC). Numbers in bold are statistically different (i.e., they are more than two standard errors away from zero).
doi:10.1371/journal.pone.0067304.t004
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in File S1). Communal roosts were located in places with high

isothermality and low precipitation; they faced toward the east and

had a high floor-shelf distance. Although the distance to town was

an important predictor of the presence of communal roosts in the

best anthropogenic model, it was not in the final mixed model

(Table 4). The spatial autocorrelation present in the response

variable near 100 km (I = 20.24) approached zero in the residuals

from the best ecological model (Fig. 1b). This suggests that the

environmental predictors adequately accounted for the use of

communal roosts at large geographic scales within the spatial

extent of our study. At the shortest distance classes (,30 km),

spatial autocorrelation remained in the residuals after model fit,

although it was low (I,0.23) and hence, this suggested that the

effect of spatial autocorrelation did not severely influence the

performance of our statistical model (Fig. 1b).

Cliff Aspect and Direction of Winds
The aspect of non-roosting cliffs in northwestern Patagonia was

randomly distributed (Rayleigh, N = 82; Z = 1.10; P = 0.33;

Fig. 2a). In contrast, cliffs aspect of condor communal roosts was

not randomly distributed (Rayleigh, N = 24; Z = 7.11; P,0.001),

and the mean angle was orientated toward the east-southeast at

108.9uN (r = 0.544; CI (95%) = 81.6u–136.1u; median = 107.5u;
Fig. 2b). Consequently, the aspect of cliffs used as communal roosts

and alternative cliffs differed (Watson, U2 = 0.42; P,0.001).

The wind direction was not randomly distributed in north-

western Patagonia (Rayleigh, N = 60961; Z = 12027.2; P,0.0001),

and its mean angle of direction at 326uN (r = 0.444; CI

(95%) = 325.6u–327.0u; median = 337.5u; Fig. 2c) is opposite to

that of the aspect of communal roosts (Fig. 2b).

Discussion

We found that the use of a cliff for roosting may involve a

twofold selection process for sites that offer shelter against natural

or anthropogenic threats while also serving as a refuge from

unfavourable weather conditions at both local and regional scales.

Thus, the proximity to food sources or other benefits of

aggregation are not unique in their role in determining the use

of a place as a communal roost as is often suggested [3,7,8,11]. At

a local scale, we showed that the geomorphology of the cliff is

important in distinguishing between roosting cliffs and those not

used for roosting, which agrees with studies in other species (e.g.,

for a mammal: [43], for a bird: [44]). At a regional scale, cliffs used

for communal roosting are located in places with low precipitation

and more stable temperatures, which suggest that climatic

variables may play an important role in the use of sites to

overnight. The lack or low levels of spatial autocorrelation that

remained in the residuals after the fit of our statistical models

suggests that our results were robust and not severely influenced by

the presence of spatial autocorrelation in our original data [38]. As

far as the local spatial scale of our analysis was concerned, the

density of livestock did not account for the presence of communal

roosts, suggesting that it is unlikely that proximity to food resources

had been an important factor underlying the use of particular cliffs

for communal roosting by the Andean condor.

We showed that climate was an important factor to account for

the presence of communal roosts at a regional scale, thus

supporting the climatic refuge hypothesis (CRH). Weather

conditions are known to be very important in modulating the

behaviour and habitat selection of many species [44–47]. The

location of communal roosts coincides with sites of lower

precipitation and lower variation in temperature rather than

alternative cliffs. Moreover, condor communal roosts were

typically located in large cliffs that faced in the direction opposite

to the predominant winds. Cliff aspect may also affect the

microclimatic conditions at the roosting place, as it influences the

quantity of radiation (daily, seasonal and latitudinal), temperature,

wind and precipitation received at a local scale [21]. Cliff facing in

the direction opposite to the wind can accumulate lower amounts

of snow [48], and are frequently selected by different raptor

species [21,49].

It has been proposed that aggregated roosting imparts

thermoregulatory benefits [3,13]. Although condors may benefit

from aggregation in close proximity to conspecifics in the

communal roosts (not evaluated in this work), our results suggest

that the roosts themselves may provide thermoregulatory benefits

due to physical and geographic characteristics associated with

morphology, aspect and geographical location. Specifically, large

cliffs, facing opposite to the predominant winds, and located in

places with low temperature variability and low precipitation, may

be suitable under adverse weather conditions [21], when

communally roosting birds could be injured [50]. Therefore, cliffs

may be important climate refuges for condors, and thus it seems

Figure 2. Distribution of the aspect of condor communal roosts, alternative cliffs and wind direction. (a) Circular plots showing the
distribution of aspects of cliffs (black points represent cliffs) not used as communal roosts in the northwest of Patagonia; (b) Aspect of 24 Andean
condor (Vultur gryphus) communal roosts. Points in the radius of the circle correspond to the number of roosts. (c) Wind direction throughout 2007 in
the NW of Patagonia. Each point corresponds to ca. 870 data points registered by the weather station. In every graph we indicate the values of the
angles (numbers outside the circle), and for (b) and (c), the mean aspect and its confidence interval (CI 95%) with a thin black line.
doi:10.1371/journal.pone.0067304.g002
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reasonable to predict that if future global warming alters the

predominant weather conditions within the region [51], this might

modify their quality as refuges.

On the other hand, cliffs selected as communal roosts were

large, poorly accessible outcrops, which supports the idea that they

may be good refuges from possible threats (predation or

anthropogenic disturbances, TRH). The extent to which cliffs

are accessible to predators seems to be relevant for communal

roosting. We found that distance from the floor to the lowest shelf

was associated with the presence of a communal roost. Cliffs with

lower shelves, at short distances from the floor, could be more

accessible to species that can be considered as potential predators

of condors (e.g., pumas or humans) and, thus, dangerous to

roosting birds. In contrast, the distance from the highest shelf to

the top of the cliff was not important. This is not surprising given

that the top of the cliffs are inaccessible for terrestrial species that

may be considered as a potential predator. The dilution effect

hypothesis proposes that the gathering of many individuals in

communal roosts may reduce the individual depredation risk [52]

with the centre of the roost being the safest [10]. Our study favors

the idea that condors use large and inaccessible cliffs to diminish

predation and disturbance, but other explanations could also affect

roost selection. For instance, large-heavy birds such as condors are

limited in their capacity to fly [14,15,53], which presents the

possibility that these birds use large cliffs, with high shelves, to help

them take off. Moreover, communal roosts oriented toward the

sunrise (east) favor thermal lift and benefit soaring flight. In the

southern hemisphere, east and north-east facing cliffs are warmer,

mainly during the morning, which could be important to increase

thermal activity more so than would occur in west-facing cliffs and

to warm the birds for an easier transition in leaving the location.

On the other hand, the amount of overhang at the top of the cliff

and above the shelves could also affect the terrestrial radiation

useful during nighttime thermal conditions. None of these

hypotheses are mutually exclusive, and deserve detailed consider-

ation in future studies.

Although cliffs used as communal roosts were in general far

from buildings, distance to town was not important in accounting

for the presence of a communal roost in the presence of climatic

and geomorphological variables. At present, the number of roads,

car traffic and extent of human population is still low in our study

area [23], which might explain why variables representing human

disturbance were less explicative in our study. Other large avian

scavengers are known to avoid human constructions selectively

(California condor [25,54] Old world vultures [55,56]); sometimes

they can be tolerant to human constructions when they find a

location appropriate, for instance, to rest or breed [57]. However,

this can pose other problems such as the introduction of

competitor species, furtive hunting, and nesting failure

[24,26,58,59]. Thus, as a precautionary principle, changes in

land use should be considered and anthropogenic disturbances

included in future evaluations of hypotheses on the use of

communal roosts.

Previous studies that test hypotheses on communal roosting

behaviour were mainly focused on the species’ decisions once the

birds selected a particular roost (eg., [8,9,13]), but not on the

identification of environmental characteristics that might be

involved in the decision of which places were used to roost.

Individual birds that visit a communal roost may be independently

searching for places with particular characteristics [3], and we

found that condor communal roosts typically provide protection

against unfavourable weather conditions, and refuge from possible

threats, supporting both the climatic and the threats refuge

hypotheses. Warm, climatically protected, inaccessible roosting

places can reduce the possible survival costs of overnighting in very

cold places, or the mortality risk of being in places highly exposed

to predators or human disturbances [3,13,18]. Therefore,

communal roosts can be a valuable resource and deserve special

attention in the development of long-term conservation practices

for condors, and likely for other species as well [3,9,29], under the

current scenario of climatic change and increases in anthropogenic

disturbances.
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22. Donázar JA, Travaini A, Ceballos O, Rodrı́guez A, Delibes M, et al. (1999)

Effects of sex-associated competitive asymmetries on foraging group structure
and despotic distribution in Andean condors. Behav Ecol Sociobiol 45: 55–65.

23. Speziale KL, Lambertucci SA, Olsson O (2008) Disturbance from roads

negatively affects Andean condor habitat use. Biol Conserv 141: 1765–1772.
24. Lambertucci SA, Speziale KL, Rogers TE, Morales JM (2009) How do roads

affect the habitat use of an assemblage of scavenging raptors? Biodivers Conserv
18: 2063–2074.

25. Koford CB (1966) The California Condor. Reprint Edition. Dover Publications.
154 p.

26. Lambertucci SA, Speziale KL (2009) Some possible anthropogenic threats to

breeding Andean condors (Vultur gryphus). J Raptor Res 43: 245–249.
27. BirdLife International (2012) Species factsheet: Vultur gryphus. http://www.

birdlife.org. Available: http://www.birdlife.org. Accessed 10 March 2013.
28. Lambertucci SA (2010) Size and spatio-temporal variations of the Andean

condor Vultur gryphus population in north-west Patagonia, Argentina: communal

roosts and conservation. Oryx 44: 441–447.
29. Lambertucci SA (2013) Variability in size of groups in communal roosts:

influence of age-class, abundance of individuals and roosting site. Emu 113:
122–127.

30. De Martino E (2009) Estudio de home range y estacionalidad en el
comportamiento de vuelo de ejemplares de cóndor andino (Vultur gryphus)
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